Sudden Cardiac Death in Adolescent Athletes

By Matt Stark, M.D., pediatric pathologist at Children’s Hospital and assistant professor of pediatric pathology at LSU School of Medicine. This issue of Pediatric Review is intended for pediatricians, family physicians, and all other interested medical professionals. For CME purposes, the author has no relevant financial relationships to disclose.

Objectives
At the end of this activity, the participant should be able to:
1. Discuss the otherwise healthy adolescent athlete who dies suddenly
2. Describe the risk to young athletes of sudden cardiac death
3. Review the role of molecular diagnosis in sudden cardiac death

Introduction
Adolescent death is distressing to the family and community no matter the cause, and the sudden death of an adolescent participating in athletics is shocking. Pathologists have found that most sudden unexplained deaths (SUD) of the adolescent are associated with a hereditary condition, of which cardiovascular diseases are the most frequent. Sudden cardiac death (SCD) is the most common cause of death in the adolescent athlete and is an important unsolved challenge in the practice of pediatrics.

General Health
The 2010 U.S. Census data tells there are 42,717,537 total children in the US from 10 – 19 years old, making them 14% of the population. In a national survey >80% of adolescents say they are in excellent or very good health and only about 5% of adolescents missed more than 11 days of school due to illness or injury in the previous 12 months.

What are the causes of death in otherwise healthy adolescents dying suddenly while engaged in athletics? Of the top 10 causes of death for adolescents, most are either traumatic or have an identifiable prodromal symptomology before the fatal event. Seizures, asthma, pulmonary embolism and intracranial bleeds can be mechanisms of death in athletic adolescents, but nearly two-thirds of sudden deaths in adolescents are attributable to sudden cardiac death.

Epidemiology
Sudden cardiac death in the adolescent is uncommon. Good numbers for adolescents only are not available, but <100 American athletes under the age of 35 have succumbed to SCD in a given year. The highest number of athlete deaths in the under 35 age group was 76 in 2006. The National Collegiate Athletic Association (NCAA) released five-year tracking numbers and found 45 SCD in 273 total deaths, making the incidence 1:43,770 participants per year. For perspective, SCD in young athletes is about as common as lightning fatalities.

Sudden Cardiac Death
In adults, coronary artery disease (CAD) is the most common cause of SCD. “Premature CAD” is much less common in adolescents. Familial hypercholesterolemia may result in diffuse atheromas of the coronary arteries, leading to blockage and myocardial ischemia. One consultant in the United Kingdom saw an 11-year-old asymptomatic female “drop dead” after a cross country run. Subsequent investigation found a strong family history of hypercholesterolemia. Much more common in adolescent athletes are non-atheromatous coronary artery anomalies (CAA), including anomalous coronary arteries, coronary artery dissection, coronary artery vasculitis and coronary artery fistula. These anomalies are often asymptomatic with one study finding 60% of affected adolescents having no syncopal episodes or chest pain on exertion before SCD. CAA are the second most common cause of SCD in young athletes and are found in about 1% of the general population.

Cardiomyopathies are the most common cause of SCD in young athletes and hypertrophic cardiomyopathy (HCM) is the most frequent form in American athletes. In the general population, nearly one in 500 people are thought to be affected, with males and females having equal incidence. HCM is an inherited disease more widespread in African-American athletes, with the mutation found in the cardiac sarcomere. There are 11 identified genes contributing to HCM, with >1,000 identified mutations within those genes. Clinical recognition of hypertrophic cardiomyopathy is
enhanced by two-dimensional echocardiogram which will demonstrate an unexplained asymmetric left ventricular wall thickening.

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is another genetic cardiomyopathy with fibrous/fatty replacement of the heart muscle associated with ventricular tachycardia and sudden death in young people, especially athletes. ARVC principally involves the right ventricle (RV), but the left ventricle is often involved and there is support for adoption of the broad term arrhythmogenic cardiomyopathy. Fibrofatty replacement of the RV inferior, apical, and infundibular walls usually starts at the epicardium and extends toward the endocardium with many examples becoming completely transmural.

Establishment of a diagnosis of a heritably transmitted cardiovascular disease has implications for family members. Two forms of molecular diagnosis for genetic cardiomyopathies currently exist. One panel consists of polymerase chain reaction (PCR) amplification of all coding exons contained in 50 selected genes. Another panel utilizes next-generation sequencing technologies targeting 18 selected genes. A promising 56 gene next-generation sequencing panel is not yet ready for market (Chart 1).

If a pathogenic mutation is documented, relatives could be approached to test for the specific abnormal gene. This approach is termed targeted cascade screening and is thought to provide a greater rate of detection than general population screening. If possible, the living family member would undergo complete cardiological and genetic assessment by a multidisciplinary team consisting of members of genetics, cardiology and the psychosocial support system. Genetic counseling could highlight the advantages (preventative measures) and disadvantages (subsequent insurance cost increase) of testing. Expert opinion has concluded that if no disease-associated mutation is identified, then evaluation may involve cardiological examination only. The purpose behind this cascade screening is to reduce SCD in family members, using the successful model of the familial cancer screening programs.

Communication between outside physicians and the Children’s Hospital Department of Pathology has previously resulted in the successful collection of high-quality DNA at the time of autopsy, allowing postmortem cardiomyopathy genetic testing. Regrettably, molecular diagnostic testing is performed in very few cases of SCD because of cost. Reimbursement for postmortem molecular testing is rarely covered by insurance companies regardless of consequences for relatives.

It is not clear if current youth athletic activity screening strategies are effective in identifying precursor cardiac lesions for SCD. Mass screenings of the general pediatric population have been undertaken in Japan and Taiwan, with associated high costs. In Japan, children were initially examined by history-taking and a resting 12-lead ECG, with detected abnormalities examined by a cardiologist. However, some diagnoses were missed, resulting in unexpected SCD. The Japanese estimated they spent $8,800 per year of life saved.

No national standard for either healthcare professional certifications or screening standards for high school or college athletes exist. Thirty-nine states have a medical clearance form needing at least a history and physical (H&P) examination, meaning 11 do not even require this. Louisiana High School Athletic Association (LHSAA) Medical Evaluation Form is an H&P form that may be filled by MD, DO, Advanced Practice Registered Nurse or Physicians Assistant. Expert consensus finds pre-participation screening by H&P

<table>
<thead>
<tr>
<th>Genes Tested</th>
<th>Specimen</th>
<th>Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARVC</td>
<td>EDTA (purple top) tube: <2 years: 2 – 3 ml</td>
<td>$3,800#</td>
</tr>
<tr>
<td>Cardiac desmosome (intercellular junction) -5 genes</td>
<td>>2 years: 3 – 5 ml</td>
<td></td>
</tr>
<tr>
<td>Ion channel</td>
<td>Older Children & Adults: 5 – 10 ml</td>
<td></td>
</tr>
<tr>
<td>Nuclear envelope</td>
<td>HCM panel in a new patient: $3375</td>
<td></td>
</tr>
<tr>
<td>HCM</td>
<td>EDTA (purple top) tube: 2 – 5 ml</td>
<td></td>
</tr>
<tr>
<td>Thick filament (Myosin related) -5 genes</td>
<td>Saliva: Company specific container</td>
<td>Prenatal diagnosis for a known mutation: $2,000</td>
</tr>
<tr>
<td>Thin filament (Tropomyosin, Troponin and the Actin Cytoskeleton) -6 genes</td>
<td></td>
<td>DNA testing of a relative for one/two/three known mutation(s): $350 - $700</td>
</tr>
<tr>
<td>Sarcomere assembly -2 genes</td>
<td>Saliva: Company specific container</td>
<td>HCM panel in a new patient: $3375</td>
</tr>
<tr>
<td>Organization of cytosolic structures</td>
<td>Saliva: Company specific container</td>
<td>Prenatal diagnosis for a known mutation: $2,000</td>
</tr>
<tr>
<td></td>
<td>Saliva: Company specific container</td>
<td>DNA testing of a relative for one/two/three known mutation(s): $350 - $700</td>
</tr>
</tbody>
</table>

Chart 1: Molecular Genetic Testing of Arrhythmogenic Right Ventricular Cardiomyopathy, Autosomal Dominant and Familial Hypertrophic Cardiomyopathy
Personal History

1. Chest pain/discomfort upon exertion
2. Unexplained fainting or near-fainting
3. Excessive and unexplained fatigue associated with exercise
4. Heart murmur
5. High blood pressure

Family History

6. One or more relatives who died of heart disease (sudden/unexpected or otherwise) before age 50
7. Close relative under age 50 with disability from heart disease
8. Specific knowledge of certain cardiac conditions in family members: hypertrophic or dilated cardiomyopathy in which the heart cavity or wall becomes enlarged, long QT syndrome which affects the heart’s electrical rhythm, Marfan syndrome in which the walls of the heart’s major arteries are weakened, or clinically important arrhythmias or heart rhythms.

Physical Examination

9. Heart murmur
10. Femoral pulses to exclude narrowing of the aorta
11. Physical appearance of Marfan syndrome
12. Brachial artery blood pressure (taken in a sitting position)

Chart 2: American Heart Association 12-step screening for reduction of sudden death in young athletes

*Prices reflect cost before contractual discount, insurance discount.

The ARVC panel also includes the genes in the HCM panel, can not be ordered separately at this time.

alone is not sufficient for detecting life-threatening cardiovascular anomalies in adolescent athletes, and the benefit of a 12 lead EKG is not clear, but it is not cost effective in mass screenings of American adolescents. Maron et al., representing the American Heart Association, recommend adolescents have a pre-participation examination every two years (Chart 2) and a medical history taken in the year between. Additional tests including EKG and Echocardiogram are not recommended for screening, but may be used by specialists if an abnormality is detected at pre-participation screening.

Summary

Adolescent non-traumatic death frequently involves SCD. Although SCD is an uncommon event in young athletes, HCM and CAA are the leading mechanisms in that order. ARVC and HCM have a genetic component, but post-mortem molecular diagnosis is rarely performed because of cost and lack of insurance reimbursement. Mass population screening is associated with high costs and occasionally missed diagnoses.

References

The Eye Center at Children’s Hospital

Children’s Hospital’s Ophthalmology Department provides consultation, evaluation, diagnosis and treatment of eye conditions in infants and children, including cataracts, glaucoma, orbital and ocular tumors, ocular plastic surgery, inflammation of the eye and adnexa, strabismus and amblyopia. Special diagnostic services, such as orthoptic evaluation, ophthalmic echography, electroretinogram, photography and visual field testing, are available for both inpatients and outpatients.

Also available are comprehensive special treatment procedures including microscopic eye surgery, lens implantation, botox injection, frontalis suspension eyelid surgery, Crawford tube tear duct surgery, adjustable sutures and amblyopia treatment.

Management expertise includes, but is not limited to:
- Amblyopia
- Eye muscle disorder
- Ptosis
- Tear duct obstruction
- Cataracts and glaucoma in children
- Eye tumors
- Eyelid and orbit

Neuro-Ophthalmology
- Adie’s pupil
- Bell’s palsy
- Giant cell arteritis
- Myasthenia gravis
- Neuroretinitis
- Optic disc anomaly
- Pituitary tumor
- Pupillary disorder
- Third nerve palsy, partial
- Third nerve palsy, total
- Fourth nerve palsy
- Sixth nerve palsy
- Seventh nerve palsy
- Visual field defect: Arcuate, sector; Heteronymous, bilat; homonymous, bilat; nasal step, peripheral

The Ophthalmology Department is located in the Ambulatory Care Center at Children’s Hospital. Patients are also seen at the Metairie Center, located at 3040 33rd St.

Children’s Hospital

A regional medical center made up of a hospital, training ground and research institute, Children’s Hospital is a 247-bed, not-for-profit medical center offering the most advanced pediatric care for children from birth to 21 years. The medical team is trained to care for the unique healthcare needs of children — children needing more time, more care and more specialized medications and technology than adults. The hospital offers treatment in more than 40 specialties, including life-threatening illnesses, routine childhood sicknesses and preventive care. With a medical staff of more than 400 physicians, including 280 pediatric specialists, Children’s Hospital has assembled the largest collaboration in the region of medical professionals dedicated to pediatric medicine.

More than 1,700 doctors refer patients to Children’s Hospital annually. Patients come from every parish in Louisiana, every state in the nation and several foreign countries. Each year, there are approximately 8,000 inpatient admissions and 164,000 outpatient visits.
In addition to Children’s Hospital Main Campus, some physicians also hold clinics at other centers.

Children’s Hospital (504) 899-9511
Metaire Center (M) (504) 832-4033
Ambulatory Care Center.... (504) 896-9532
Baton Rouge Center (BR) . (225) 216-3047
Lafayette Center (L) (337) 289-8289

Adolescent Behavioral
Health Unit
Office (504) 896-7200
FAX (504) 896-7230
Hanna, Jamie
Williams, Andrew

Allergy/Immunology
Office (504) 896-9589
FAX (504) 896-9311
Dimitriades, Victoria (M, BR)
Ochoa, Augusto
Paris, Kenneth (M, L)
Sorensen, Ricardo (M)
Wall, Luke (M)

Amputee Clinic
Office (504) 896-9569
FAX (504) 896-9849
Gonzales, Tony

Autism Center
Office (504) 896-7272
FAX (504) 896-7273
Kamps, Jodi

Botox
Office (504) 896-9458
FAX (504) 894-5140
Tilton, Ann
Wong, Joaquín

Cardiology
Office (504) 896-9751
FAX (504) 896-3952
Ascuito, Robert
Gajewski, Kelly
Lilje, Christian
Ross-Ascuito, Nancy
Sernich, Steffen
Siwik, Ernest
Stopa, Aluzio

Cardiothoracic Surgery
Office (504) 896-3928
FAX (504) 896-9410
Caspi, Joseph
Dorotan, Jaime
Pettitt, Timothy

Children at Risk
Evaluation (CARE) Center
(Audrey Hepburn CARE Center)
Office (504) 896-9237
FAX (504) 896-9733
Jackson, Jamie (BR)
Meha, Neha (BR)
Troy, Anne, NP
Wetsman, Ellie

Cleft/Craniofacial
Office (504) 896-9857
FAX (504) 894-5563
Cavallino, Claudia
Corell, Mark
Ferguson, Michael
Hagmann, Michael
Holmes, Stephen
Lacassie, Yves
Ledoux, William
Marble, Michael
McBride, Lori (504) 896-9568
Moses, Michael
Simon, Lawrence
Smith, Demarcus
St. Hilaire, Hugo
Zambrano, Regina

Clinical Trials
Office (504) 894-5377
FAX (504) 896-2745

Cochlear Implants
Office (504) 896-2141
FAX (504) 894-5544
Arriaga, Moises

Craniofacial/Genetics
Office (504) 896-9857
FAX (504) 894-5563
Lacassie, Yves (M)
Marble, Michael
Zambrano, Regina

Cystic Fibrosis
Office (504) 896-9436
FAX (504) 896-3993
Levine, Stephen
Pepiak, Derek

Dental
Office (504) 896-9580
FAX (504) 896-1418

Feeding Clinic
Scheduling (504) 896-2888
Office (504) 896-9534
FAX (504) 896-2889
Hyman, Paul

Gastroenterology
Scheduling (504) 896-2888
Office (504) 896-9534
FAX (504) 896-2889
Brown, Raynorda (M, BR)
Hyman, Paul
Keith, Brent
Monagas, Javier (M)
Rosenberg, Allan (M, BR)

Genetics
Office (504) 896-9254
FAX (504) 896-3997
Lacassie, Yves (M)
Marble, Michael (BR, L)
Zambrano, Regina (M, BR)

Gynecology
Scheduling (504) 896-2888
FAX (504) 896-2889
Holman, Stacey
Wells, Lindsey

Hematology/Oncology
Office (504) 896-9740
FAX (504) 896-9758
Gardner, Renée
Morales, Jaime (BR)
Morrison, Cori (L)
Prasad, Pinki (L)
Velez, Maria (BR)
Yu, Lolie (L)

Hemophilia Clinic
Office (504) 896-9740
FAX (504) 896-9758
Morales, Jaime
Velez, Maria

Hospitalists Referrals
Office (504) 896-3924
FAX (504) 894-5374
Beatty, Kathryn
English, Robin
Hescock, Jay
Roy, Melissa
Sandlin, Chelsea

Dental
Office (504) 896-9580
FAX (504) 896-1418
<table>
<thead>
<tr>
<th>Specialties</th>
<th>Office</th>
<th>FAX</th>
<th>Phone</th>
<th>Clinic</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious Disease</td>
<td>Office (504) 896-9583</td>
<td>FAX (504) 894-5137</td>
<td>Begue, Rodolfo</td>
<td>Metairie Center (M) (504) 832-4033</td>
<td>Lafayette Center (L) (337) 289-8289</td>
</tr>
<tr>
<td>International Adoption Clinic</td>
<td>Office (504) 896-9583</td>
<td>FAX (504) 894-5137</td>
<td>Begue, Rodolfo</td>
<td>Ambulatory Care Center (504) 896-9532</td>
<td>..... (225) 216-3047</td>
</tr>
<tr>
<td>Kidney Transplant Clinic</td>
<td>Office (504) 896-9238</td>
<td>FAX (504) 896-9240</td>
<td>Aviles, Diego</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Metabolic</td>
<td>Office (504) 896-9254</td>
<td>FAX (504) 896-3997</td>
<td>Marble, Michael</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Muscular Dystrophy</td>
<td>Office (504) 896-9458</td>
<td>FAX (504) 894-5140</td>
<td>Tilton, Ann</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Nephrology</td>
<td>Office (504) 896-9238</td>
<td>FAX (504) 896-9240</td>
<td>Ashoor, Isa</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Neurofibromatosis</td>
<td>Office (504) 896-9254</td>
<td>FAX (504) 896-3997</td>
<td>Lacassie, Yves</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Neurology</td>
<td>Scheduling ... (504) 896-2888</td>
<td>Office (504) 896-9458</td>
<td>Conravey, Allison (M)</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Neurology (ENT)</td>
<td>Scheduling ... (504) 896-2888</td>
<td>Office (504) 896-2889</td>
<td>Deuty, Stephen</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Otolaryngology (ENT)</td>
<td>Office (504) 896-2888</td>
<td>FAX (504) 896-2889</td>
<td>Gaultroux, Jessica (M, BR, L)</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Physical Therapy</td>
<td>Office (504) 896-9557</td>
<td>FAX (504) 896-2894</td>
<td>McGuire, Shannon</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Plastic Surgery</td>
<td>FAX (504) 896-9557</td>
<td>FAX (504) 896-9569</td>
<td>McGraw, Tony</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Plastic Surgery</td>
<td>FAX (504) 896-9557</td>
<td>FAX (504) 896-9569</td>
<td>Levine, Stephen</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Psychological & Rapid Treatment Center</td>
<td>Office (504) 896-7272</td>
<td>FAX (504) 896-7273</td>
<td>Tilton, Ann</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Pulmonology</td>
<td>Office (504) 896-9438</td>
<td>FAX (504) 896-3993</td>
<td>Greene, Clarence (L)</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Rheumatology</td>
<td>Office (504) 896-9385</td>
<td>FAX (504) 896-9410</td>
<td>Ellis, Jr., George (M)</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Scoliosis/Pediatric Spine</td>
<td>Office (504) 896-9569</td>
<td>FAX (504) 896-9849</td>
<td>Accousti, William (M,L)</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Speech & Hearing</td>
<td>Office (504) 896-9583</td>
<td>FAX (504) 896-9583</td>
<td>Gonzalez, Tony (BR)</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Surgery</td>
<td>Office (504) 896-9756</td>
<td>FAX (504) 896-9831</td>
<td>Gonzalez, Tony (BR)</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Travel Clinic</td>
<td>Office (504) 896-9756</td>
<td>FAX (504) 896-9583</td>
<td>Gonzalez, Tony (BR)</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Treatment After Cancer & Late Effects Center</td>
<td>Office (504) 896-9740</td>
<td>FAX (504) 896-9758</td>
<td>Gonzalez, Tony (BR)</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Urology</td>
<td>Office (504) 896-2888</td>
<td>FAX (504) 896-9233</td>
<td>Gonzalez, Tony (BR)</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Vascular Anomalies</td>
<td>Office (504) 896-9569</td>
<td>FAX (504) 896-5563</td>
<td>Gonzalez, Tony (BR)</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Wound Clinic</td>
<td>Office (504) 896-9377</td>
<td>FAX (504) 896-9831</td>
<td>Gonzalez, Tony (BR)</td>
<td>.....</td>
<td>.....</td>
</tr>
</tbody>
</table>
| Children’s Hospital New Orleans Specialties & Therapies

In addition to Children's Hospital Main Campus, some physicians also hold clinics at other centers.

Children's Hospital (504) 899-9511
Metairie Center *(M)* (504) 832-4033
Baton Rouge Center *(BR)* (225) 216-3047

Updated 1/14
CONTINUING MEDICAL EDUCATION

Children’s Hospital is accredited by the Louisiana State Medical Society to provide continuing medical education for physicians. Children’s Hospital designates this enduring material educational activity for a maximum of 1.0 AMA PRA Category 1 Credit.™ Physicians should only claim credit commensurate with the extent of their participation in the activity. Please PRINT your personal information.

Name: ____________________________

Physician ID number or last four SSN digits: ____________________________

Mailing address: __

Topics that you would like to see in future issues: __________________________

Please record your responses to the questions on the form below. Please circle the best possible answer. CME offer is good until May 31, 2014.

1. The most common cause of sudden cardiac death in young athletes is:
 a. Non-atheromatous coronary artery anomalies
 b. Untreated Kawasaki’s disease
 c. Arrhythmogenic right ventricular cardiomyopathy
 d. Hypertrophic cardiomyopathy
 e. Commotio cordis

2. What is the highest number of athlete deaths attributed to sudden cardiac death recorded in a single year in the US?
 a. 7
 b. 76
 c. 760
 d. 7,600
 e. 7,6000

3. Molecular diagnostic testing is performed in very few cases of sudden cardiac death (SCD) because of what factor?
 a. Cost
 b. Molecular diagnosis is difficult to interpret
 c. Lack of high quality DNA at autopsy
 d. There are no heritable causes of SCD
 e. Molecular tests for causes of SCD do not exist

To receive CME credit, participants must score 100%.

To receive CME credit, mail, e-mail or fax your completed form to: CME Office • Children’s Hospital • 200 Henry Clay Avenue • New Orleans, LA 70118

E-mail: cmooney@chnola.org • Fax: (504) 896-3932
CMEasy

Sign up to have Pediatric Review delivered each month by e-mail or get each issue at www.chnola.org/pedrev